The pitfall of the transient, inconsistent anticancer capacity of antiestrogens and the mechanism of apparent antiestrogen resistance

نویسنده

  • Zsuzsanna Suba
چکیده

Although antiestrogens have been available for breast cancer therapy since the early 1970s, neither their inconsistent anticancer capacity nor the developing antiestrogen resistance of tumors can be fully understood. Although clinical and experimental investigations revealed many tiny details concerning the link between estrogen signaling and tumor development, they yielded fairly controversial findings. Estrogen receptor (ER) overexpression in tumor cells induced by estrogen treatment was erroneously regarded as a promoter of DNA damage, genomic instability, and tumor growth. Similarly, compensatory ER overexpression caused by antiestrogen treatment or estrogen withdrawal was mistakenly evaluated as a key for rapid tumor growth attributed to acquired antiestrogen resistance. Nevertheless, ER upregulation induced by estrogen treatment is a physiologic process even in tumor cells, whereas in the case of antiestrogen administration, it is a contraregulatory action to defend the endangered estrogen signaling. Upregulation of estrogen signaling displays a unique dichotomy, ensuring the survival and safe proliferative activity of healthy cells, while inducing apoptotic death of malignant tumor cells. Analysis of the fairly controversial results justifies that whatever type of available endocrine therapies may be used, including estrogen, antiestrogen treatment, or oophorectomy, an extreme upregulation of ER signaling seems to be the crucial mechanism of successful prevention and treatment for breast cancer. The inconsistent therapeutic effects of antiestrogen administration may be explained by the different genetic capacities of patients for the compensatory upregulation of ER and aromatase enzyme expressions. The weaker the defensive counteraction against the inhibition of estrogen signaling, the poorer is the prognosis of the disease. De novo or acquired antiestrogen resistance of tumors may be associated with the missing capacity of patients for the extreme upregulation of estrogen signaling or with the exhaustion of defensive counteractions in cases that previously showed good reactivity. High-dose estrogen treatment is capable of restoring ER signaling and anticancer capacity even after heavy exposure to antiestrogen therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells

The majority of breast cancers express estrogen receptor α (ERα), and most patients with ERα-positive breast cancer benefit from antiestrogen therapy. The ERα-modulator tamoxifen and ERα-downregulator fulvestrant are commonly employed antiestrogens. Antiestrogen resistance remains a clinical challenge, with few effective treatments available for patients with antiestrogen-resistant breast cance...

متن کامل

Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens.

The development of endocrine resistance in previously sensitive, estrogen receptor-positive breast cancers is a major limitation in the treatment of breast cancer. Because antiestrogens have a cell cycle-specific action on breast cancer cells and influence the expression and activity of several cell cycle-regulatory molecules, the development of aberrant cell cycle control mechanisms is a poten...

متن کامل

Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells.

Antiestrogens, such as the drug tamoxifen, inhibit breast cancer growth by inducing cell cycle arrest. Antiestrogens require action of the cell cycle inhibitor p27(Kip1) to mediate G1 arrest in estrogen receptor-positive breast cancer cells. We report that constitutive activation of the mitogen-activated protein kinase (MAPK) pathway alters p27 phosphorylation, reduces p27 protein levels, reduc...

متن کامل

Resistance to different antiestrogens is caused by different multi-factorial changes and is associated with reduced expression of IGF receptor Ialpha.

Development of antiestrogen resistance is a major clinical problem, and therefore it is crucial to elucidate the mechanisms involved. To investigate whether gain-of-function or loss-of-function mechanisms was most likely to be involved, cell fusion between the antiestrogen-sensitive MCF-7 and the ICI 164384- and ICI 182780-resistant MCF-7/164(R)-5 cell lines was performed. Furthermore, a fusion...

متن کامل

Functional Ablation of pRb Activates Cdk2 and Causes Antiestrogen Resistance in Human Breast Cancer Cells

Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb) family tumor suppressors causes antiestrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015